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Abstract

The spread of infectious diseases such as COVID-19 presents many challenges to health-

care systems and infrastructures across the world, exacerbating inequalities and leaving the

world’s most vulnerable populations most affected. Given their density and available infra-

structure, refugee and internally displaced person (IDP) settlements can be particularly sus-

ceptible to disease spread. In this paper we present an agent-based modeling approach to

simulating the spread of disease in refugee and IDP settlements under various non-pharma-

ceutical intervention strategies. The model, based on the JUNE open-source framework, is

informed by data on geography, demographics, comorbidities, physical infrastructure and

other parameters obtained from real-world observations and previous literature. The devel-

opment and testing of this approach focuses on the Cox’s Bazar refugee settlement in Ban-

gladesh, although our model is designed to be generalizable to other informal settings. Our

findings suggest the encouraging self-isolation at home of mild to severe symptomatic

patients, as opposed to the isolation of all positive cases in purpose-built isolation and treat-

ment centers, does not increase the risk of secondary infection meaning the centers can be

used to provide hospital support to the most intense cases of COVID-19. Secondly we find

that mask wearing in all indoor communal areas can be effective at dampening viral spread,

even with low mask efficacy and compliance rates. Finally, we model the effects of reopen-

ing learning centers in the settlement under various mitigation strategies. For example, a

combination of mask wearing in the classroom, halving attendance regularity to enable

physical distancing, and better ventilation can almost completely mitigate the increased risk
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of infection which keeping the learning centers open may cause. These modeling efforts are

being incorporated into decision making processes to inform future planning, and further

exercises should be carried out in similar geographies to help protect those most vulnerable.

Author summary

The spread of infectious diseases presents many challenges to healthcare systems and

infrastructures across the world. Given their density and available infrastructure, refugee

and internally displaced person (IDP) settlements can be particularly susceptible to the

dangers of disease spread.

This study seeks to understand how COVID-19 spreads in settlements, focusing on the

Cox’s Bazar refugee settlement in Bangladesh. Our model simulates the movements and

interactions of each individual in the settlement, incorporating information about family

structures and demographic attributes, to understand how COVID-19 might spread

under various intervention strategies.

Our analysis suggests that mask wearing in indoor locations can have a significant

effect on disease spread, even when wearing reusable cotton masks, which the people in

the settlement can make themselves. We also look at different ways to treat individuals

who only have milder symptoms and don’t yet require hospitalisation, as well as various

scenarios which might allow for the safe reopening of schools in the settlement.

With almost 80 million forcibly displaced people in the world, we hope that this work

will inspire more modeling groups to focus on these vulnerable populations, which have

been traditionally under-served by such efforts, to ensure no one is left behind.

1 Introduction

The spread of COVID-19 across the world presents many challenges to healthcare systems and

infrastructures, exacerbating inequalities and leaving the world’s most vulnerable populations

most affected. Refugee and internally displaced persons (IDPs) settlements, especially those

which have been rapidly created in response to sudden crises, often suffer from overcrowding

and insufficient sanitation facilities. Given these conditions, disease spread in settlements has

previously been shown to be rapid [1]. The COVID-19 pandemic presents significant threats

to people living in these settlements, and the provision of detailed information on potential

mitigation strategies is of vital importance. In this paper, we present a simulation tool to sup-

port decision making and advocacy by simulating the potential effectiveness of operational

interventions in refugee and IDP settlements.

Specifically, we take an agent-based modeling (ABM) approach to understand the impact

of public health interventions on limiting disease spread in settlements. Operational interven-

tions (particularly non-pharmaceutical interventions) can take a variety of forms, from alter-

native care delivery mechanisms to behavioral interventions such as physical distancing. In

settlements, some of the most frequent interventions for mitigating disease spread are not fea-

sible due to the complex environments and difficult conditions in which Persons of Concern

(PoCs) to the UN Refugee Agency (UNHCR) live [2]. For example, a lack of Personal Protec-

tive Equipment (PPE) such as surgical masks could make well-established measures such as

compulsory mask wearing challenging to implement. To overcome these difficulties, new

operational interventions must also be devised and evaluated. By simulating the possible effects
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of such measures, we hope to provide teams on the ground with reliable insights for data-

driven decision making and situational planning.

The development and testing of this approach focuses on the Cox’s Bazar refugee settlement

in Bangladesh, which reported its first COVID-19 case in mid-May 2020 [3]. In particular, we

model the interactions between residents of the Kutupalong-Balukhali Expansion Site. With

over 900,000 Rohingya PoCs, Cox’s Bazar contains one of the largest refugee settlements in the

world [4]. Its inhabitants are primarily Rohingya people, a stateless Muslim minority who have

fled targeted violence, discrimination, and human rights violations in Myanmar [5]. A number

of risk factors make the settlement vulnerable to epidemic outbreaks, including: high rates of

global acute malnutrition and other comorbidities such as respiratory illnesses, which could

lead to lower general immunity among camp residents [6]; high population density and com-

munal facilities, which increase the risk of person-to-person transmission; and limited access

to sources of information such as the internet as well as low levels of literacy, which make pub-

lic health campaigns challenging.

Given these risks, UNHCR and World Health Organization (WHO) teams responded rap-

idly to the COVID-19 pandemic, initiating preventive activities two months before the first

case was confirmed [7–9]. Due to limitations in testing and case reporting in the settlement

setting, we take a scenario-based approach focused on simulating the relative efficacies of

potential interventions, as opposed to attempting to predict highly accurate numbers for infec-

tions, hospitalizations and fatalities. As a result of this design choice, detailed COVID-19 case

data is not required for our modeling; instead, we rely on a set of clearly recorded assumptions

on interaction and transmission probabilities which can be varied in sensitivity analyses.

Approaches to modeling infectious diseases span a broad range of techniques. Some of the

most common methodologies are differential equation-based compartmental models [10].

These approaches are useful for gaining high-level insights based on aggregate data, but the

level of granularity offered by these models can be limited. Indeed, in the case of refugee and

IDP settlements, continuous reporting by UN entities and NGOs ensures that regular demo-

graphic and needs-based data is collected in a consistent manner. Agent-based models are

often chosen due to their ability to capture geographic and demographic heterogeneity within

a population, as well as differences in behavioral patterns including group-level dynamics and

social mixing down to the individual level [11, 12]. This level of granularity allows for the pre-

cise simulation of many possible operational interventions, and is becoming increasingly

accessible given recent improvements in data collection and computational power. Several

studies have used ABMs for modeling infectious diseases and health-related policy interven-

tions in low-resource settings (e.g. [13, 14]). Our work is similar to prior models of cholera

spread which incorporate detailed information such as the geographic structure of settlements

and the movement of agents to undertake routine daily activities [15, 16].

Recently, a number of models have been developed to simulate the spread of COVID-19 in

refugee and IDP settlements specifically. For example, Truelove et al. [17] present a compart-

mental modeling approach simulating the spread of COVID-19 in the Kutupalong-Balukhali

Expansion Site of the Cox’s Bazar settlement with a focus on predicting infections, hospitaliza-

tions, and mortality based on different transmission scenarios defined by their reproduction

number. An agent-based approach has also been used model the spread of the disease and pos-

sible interventions in Greece’s Moria camp [18].

The core strengths of our approach are that (i) we present a generalizable framework for

simulating epidemics in complex refugee and IDP settings that takes into account detailed

data on geography, population structure, behavior, facilities and potential mixing points; (ii)

we implement operational interventions as changes in the parameters defining movement pat-

terns, social behaviors or contact intensity, which makes it possible to evaluate a wide range of
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policy options—including geographically heterogeneous interventions—without fundamen-

tally altering the model structure; (iii) we model detailed health trajectories and account for

the impacts of different comorbidities; and (iv) we propose a visual analytics framework that

allows us to distill insights from our simulations for public health experts and decision makers.

This paper will focus on presenting the first three of these in detail, including their implemen-

tation in the case of the Cox’s Bazar settlement, while the visual analytics framework will be

presented and discussed in generality.

2 Methods

The structure and functionality of our model have been adapted from JUNE [19], a generaliz-

able ABM framework for modeling the movement and interactions of people at the individual

level, which was first used to model the spread of COVID-19 in England. Our methodology

has been designed to apply not only to the current COVID-19 situation, but also to generalize

to situation planning in future disease outbreaks in similar geographies. Our modeling process

consists of four stages: i) building a ‘digital twin’ of the community of interest; ii) understand-

ing and simulating the possible movements and interactions of the community’s residents; iii)

implementing operational interventions to simulate their effects on the spread of disease; and

iv) communicating findings to decision makers and experts in the field. This final step is

equally as important as the others since if results cannot be effectively communicated, then

valuable insights from the model will not be useful.

2.1 Digital twin

The first stage of our modeling process requires building a ‘digital twin’ of the settlement. This

consists of defining the geographical structure of the model, building the virtual population

and assigning them demographic attributes, and constructing locations where individuals can

interact with each other. The digital twin forms the basis for the environment in which the

simulation can be run. In this section we describe the model’s construction and provide an

overview of our data sources and algorithmic choices. For additional details on the underlying

architecture we refer to the original framework publication [19] and to S1 Appendix.

2.1.1 Geography. The JUNE model allows users to define three geographical entities in

increasing order of granularity: regions, super areas, and areas [19]. For the most aggregate

level (‘regions’) we select the camps which make up the Kutupalong-Batukhali Expansion Site.

For the middle geographical layer (‘super areas’) we use the camp Admin level 2 blocks [20];

each camp contains 6–8 blocks. Finally, for the highest level of granularity (‘areas’), we use the

sub-blocks as defined by the International Organization for Migration (IOM) [21]. Fig 1

shows the three different geographical layers used in our model of the refugee settlement in

Cox’s Bazar.

2.1.2 Demography. Once the geographical hierarchy has been built, we construct the vir-

tual population. We initialize the population with age and sex attributes using statistical data

from census records collected by UNHCR and the Government of Bangladesh for the camp

Admin level 2 blocks (super areas) [24]. The number of residents in each IOM-defined sub-

block (area) is assigned in proportion to the population of these areas [25]. We naturally cap-

ture the heterogeneity in population density and demographic attributes by ensuring that our

digital twin reflects the distribution of residents at the sub-block (area) level, and the statistical

age and sex characteristics of the camp Admin level 2 blocks (super areas).

Finally, national distributions of comorbidities by age and sex from Myanmar (the origin

country of the PoCs) were used to assign comorbidities to the virtual population based on each

agent’s age and sex. We assumed, for practical reasons, that an individual has at most one
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relevant comorbidity that would affect the probability of severe infection. Details on the esti-

mated effects of comorbidities and the assignment process for comorbidities can be found in

Section 2.2.2 and S1 Appendix.

2.1.3 Shelters. Intra-family interactions create key transmission routes for infectious dis-

eases. Correctly modeling family (we use the term ‘household’ interchangeably with ‘family’)

and shelter compositions is therefore important to enable realistic reproductions of disease

spread. We use data on the number of households at the sub-block (area) level as given by

IOM [25] and data on the total number of residents in each Admin level 2 block (super-area)

[24] to cluster individuals into households according to their age and sex, in order to create

realistic demographic household structures.

Fig 1. Digital twin geographic and location information. Upper left: Map of Bangladesh showing location of the

Cox’s Bazar settlement. Upper right: Map of the modelled expansion site with three geographical layers. Lower left:

modeled distribution centers. Lower right: Detailed view of Camp 4 showing six types of modeled locations. Basemaps

from [22, 23].

https://doi.org/10.1371/journal.pcbi.1009360.g001
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Once we have constructed the households, we group households into shelters in which mul-

tiple households can live. In the Cox’s Bazar settlement, approximately 75% of the families

share a shelter with another family [5] which results in an average shelter size of 7 persons. In

general, shelters will have one or two rooms meaning two families may live in the same space,

or may have a dividing wall between them, while mixing in communal areas.

2.1.4 Learning centers. Learning centers refer to classroom settings for educating chil-

dren and young adults [26]. Due to the large number of children in the settlement, and the lim-

ited number of educational facilities, children usually attend the centers for two hours a day,

and several blocks of two-hour teaching sessions occur daily in each learning center [27]. We

model these activities by assigning children and teachers to available learning centers in their

camps, according to the centers’ proximity to the students’/teachers’ shelters. Only children

enrolled in the education system are sent to learning centers in our model, and they attend one

of four available two-hour time slots. The number of children who attend learning centers is

chosen to match enrollment statistics collected at the camp (region) level, stratified by age and

sex [26, 28–30].

2.1.5 Dynamic locations. The shelter and classroom constructions described above cap-

ture interactions between static groups of people. We currently assume that household and

shelter compositions are fixed, along with the learning center attended by each enrolled child.

However, there are many other locations at which attendance and mixing are highly dynamic,

such as aid collection stations or hand pumps and latrines.

Table 1 details the additional locations in the Cox’s Bazar settlement which we include in

the model. We also model interactions between different shelters through family and individ-

ual visits. In Section 2.2 we discuss how we select which people visit these locations, and with

what frequency, based on available research and literature.

2.2 Simulator

The second stage of our modeling process involves designing the simulator which probabilisti-

cally models the social mixing and dynamic interactions of the virtual population. The digital

twin forms the basis upon which the simulator is constructed. Each person in the model has

the potential to move and interact with others based on individual and group dynamics which

are derived from data. Since we model movement at the individual agent level, we have the

ability to flexibly change all parameters used in the model and allow for different social mixing

behaviors. In this section we provide an overview of the simulator set up. For additional details

on the underlying methodologies and parameter choices please refer to S1 and S2 Appendices.

Table 1. Classes of locations that simulated PoCs can visit in the model.

Activity Type

Shelter Visits Shelter

Distribution Center Indoor

Non-Food Distribution Center Indoor

E-Voucher Outlet Indoor

Communal Center Indoor

Safe Space for Women and Girls Indoor

Religious Center Indoor

Learning Center Indoor

Hand Pump and Latrine Outdoor

Play group Outdoor

https://doi.org/10.1371/journal.pcbi.1009360.t001
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2.2.1 Daily routine. To model the movement of individuals in the camp, we divide each

simulated day into several time steps as shown in Fig 2. In each time step, an individual has a

certain probability of doing one of several possible activities, during which they might interact

with others who carry out the same activity in the same location contemporaneously. If no

activity is chosen the agent will remain in their shelter. The statistical nature of this type of

activity choice means that the routines for each individual change each day, with the exception

of a few fixed activities such as sleeping in the shelter at night. This is a reasonable assumption

given the operation of such settlements [31].

Simulated individuals begin the day in their shelters, where they can interact with others in

their household, or other households which share the same shelter (see Section 2.1.3). After

this time step, each day contains four opportunities for the individuals to undertake an activity

in one of the locations listed in Table 1. The probability that an individual carries out a certain

activity is determined based on their age and sex and available research on individual activity

patterns (see S1 Appendix for more details on how these are derived from available literature).

This implementation enables realistic modeling of how individuals behave as we can tailor the

amount of time individuals spend in a given location based on demographic attributes of the

population in accordance with available literature. This procedure also allows us to capture

both local and inter-camp mixing.

2.2.2 Disease. At each time step, different collections of individuals will inhabit the same

space (e.g., a distribution center or play group) during which interactions and transmission

can take place. The probability of disease transmission depends on various attributes such as

duration of exposure, whether the individuals are indoor/outdoors and the type of contacts

people might have. For further details see S1 Appendix and Aylett-Bullock et al. [19].

Once an individual has been infected, we assign them a health trajectory that controls the

severity of their symptoms as a function of time. Each trajectory is characterized by the final

outcome of the disease (whether the individual recovers or dies), the different stages through

which the individual passes to arrive at that final outcome, and the duration of each stage. At

present, we do not include the possibility of re-infection, after an individual recovers their sus-

ceptibility becomes zero.

In Fig 3, we show the stages that we include, together with the possible trajectories defined

by arrows. We incorporate the distinction between mild and severe infection to differentiate

between people who show symptoms but are still well enough to leave their homes, and people

who develop more severe illness that prevents them from doing so. An important factor that is

difficult to account for, but which influences the probability of hospitalization, is the evolution

Fig 2. Top: Daily routine structure for individuals modeled in the simulation. We allow each individual to perform up

to four possible activities per day (although this can be flexibly changed). If an activity is not chosen, the individual

returns to their shelter. Middle: Example of a simulated day for an adult in the settlement. Bottom: Example of a

simulated day for a child attending a learning center in the settlement.

https://doi.org/10.1371/journal.pcbi.1009360.g002
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and diversity of healthcare service seeking behaviour. Some survey data is available on how

PoCs attend healthcare services in the event of severe illness [36], although we found respon-

dents to be largely uniformly highly likely (over 95%) to seek care in this event. Despite this,

increased data collection on how and when PoCs attend different healthcare services in the

event of disease outbreak could be beneficial for future modeling efforts. However, even with

available data on PoC behaviour, it is challenging to know exactly how to translate this into

modeling work—for example, it is not well-understood for emerging diseases, such as

COVID-19, to what extent the likelihood of death changes when an infected individual does

not seek hospital care, even though the severity of their symptoms requires it. We therefore

leave the inclusion of differing healthcare seeking behaviours for future work due to the lack of

publicly available behavioural and clinical data for the specific case of COVID-19. Further-

more, the metrics used to measure intervention efficacy in this paper focus on infections rather

than hospitalisation and death, meaning we are less sensitive to differing healthcare seeking

behaviours.

2.2.3 The effect of comorbidities on disease progression. An individual’s response to

COVID-19 and other diseases can depend on the presence of illnesses such as diabetes, heart

conditions, and conditions causing immune suppression [32, 37, 38]. To better reflect the spe-

cific evolution of the virus in the Cox’s Bazar settlement, we accounted for comorbidities

which are assumed to affect the probability of severe COVID-19 infection.

Specifically, we allow the probability of following one of the disease trajectories outlined

above to depend on age, sex, and comorbidity status. As a baseline, we use estimates from

Aylett-Bullock et al. [19], derived from UK data, to determine the likelihood of each trajectory

for any given case of COVID-19 conditional on age, sex, and the comorbidity distribution in

Fig 3. Upper: Modeled health trajectories. When an individual is infected, they might remain asymptomatic, or

become symptomatic with symptoms likely to progress. In our implementation, the likelihood of each of these

transitions is dependent on the age, sex, and/or comorbidities of the infected individual. As more data becomes

available, additional factors can also be included. Lower: Severe infection rates adjusted for estimated comorbidities in

the PoC population using UK data as a baseline. We show the increased risk of severe infection due to the presence of

comorbidities, rc(age, sex), defined as, PCox(severe | age, sex) = PUK(severe | age, sex)(1 + rc(age, sex)). Note that

although rc(age, sex) decreases for the oldest age groups, PUK(severe | age, sex) increases exponentially with age and

therefore the older an agent is, the more likely it is for them to develop a severe infection.

https://doi.org/10.1371/journal.pcbi.1009360.g003

PLOS COMPUTATIONAL BIOLOGY Operational response simulation tool for epidemics within refugee and IDP settlements

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009360 October 28, 2021 8 / 25

https://doi.org/10.1371/journal.pcbi.1009360.g003
https://doi.org/10.1371/journal.pcbi.1009360


the UK. We then adjust these likelihoods for the age, sex, and comorbidity status of each mem-

ber in our simulated population (further details are found in S1 Appendix).

In Fig 3, we show the relative risk of severe infection after accounting for comorbidities in

the settlement compared to the UK [32–35]. We define relative risk as the mean probability of

a severe outcome (severe symptoms, hospitalization, or death) for a population with the

comorbidity prevalence in the Cox’s Bazar settlement, divided by the mean probability of a

severe outcome for a population with the comorbidity prevalence of the UK. On average, resi-

dents of Cox’s Bazar settlement are at higher risk of severe infection across almost all age

groups except for the oldest cohorts, compared with the UK population; this difference is most

prominent for ages between 20–70. The estimated increased risk of severe infection originates

from a higher probability to develop comorbidities in the age ranges 20–70 for the inhabitants

of the Cox’s Bazar settlement, compared to those in the UK. The oldest age groups in the settle-

ment present a lower probability to develop comorbidities compared to the same age group in

the UK, which we hypothesize to be the result of survival bias; the older individuals in Myan-

mar tend to also be those with a smaller number of comorbidities.

2.3 Data visualisation tool

Accurately communicating the detailed data and insights produced by complex models is chal-

lenging: e.g., a single figure can clearly show either a comprehensive overview or detailed plots,

not both. Another communication challenge is that correct interpretation of data is often rela-

tive; changes in infection numbers only have meaning when we consider factors like the total

population, the worst case scenario, and the best case scenario, so policymakers must consider

this information in totality. Additionally, due to inherent uncertainty about the correct hyper-

parameter values, simulations may experiment with a grid of practicable values, generating a

large amount of data that can be difficult to interpret and communicate.

People often turn to dashboards to present succinct views of large datasets. However, each

of our simulations produces enough information to warrant its own dashboard, and allowing

easy comparison across simulations is a significant visualization challenge. To this end, we

built an interactive dashboard to accompany our simulations. While this dashboard has been

tested and deployed with results from our simulations in the Cox’s Bazar settlement, our dis-

cussions in this paper will be more conceptual, with the aim of presenting this framework and

the importance of developing tools for communicating results.

Our dashboard is specifically designed to allow users to explore how different hyperpara-

meter choices affect the outcomes of policy decisions, and helps translate key concepts between

modelers and decision makers. For example, Fig 4 shows that the geographic distribution of

infections does not seem to change by simulation, even though the overall height of the infec-

tion peaks varies significantly with the chosen parameters. More details on the tool and exam-

ples of comparisons between simulations are contained in S1 Appendix.

This dashboard is intended to serve as a collaborative tool in three main ways. For the

researcher and data scientist, it enables rapid verification that the collective behavior of the

agents aligns with expected real-world behavior, which can assist in identifying errors and

debugging the model. For the policymaker, it provides an extensive view into the potential

impact of different policy choices, enabling comparison across different assumptions. Finally,

for those unfamiliar with the underlying base model it serves as a communication tool; the

dashboard exposes the granularity of information that can be extracted from our agent-based

model and instills confidence that the ‘best-case’ and ‘worst-case’ scenarios have been suffi-

ciently analyzed.
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3 Results

Once the digital twin and simulator have been set up, we are able to run simulations under dif-

ferent parameter configurations to model the possible effects of different operational interven-

tions. Given the incompleteness of testing and case reporting data in the Cox’s Bazar

settlement, we focus primarily on analyzing intervention efficacy through comparing the rela-

tive magnitudes of infection curves between various implementation conditions. Different

models and approaches can account for different degrees and types of uncertainty making

consensus on statistical predictions challenging even in more data rich environments. How-

ever, despite often highly variable predictions, consensus can often be reached on ranking

intervention efficacy [39] which can be of interest for decision making.

The interventions presented in this paper are chosen based on those deemed most impor-

tant by public health officials operating in the settlement according to an assessment of the

short and medium-term needs including feasibility and timeliness. All interventions are com-

pared with a baseline scenario which includes current policy decisions, such as the closure of

certain venues and changes in the probability with which people perform certain tasks. S2

Appendix details the assumptions made for each activity that a digital person may participate

in.

Interventions are implemented either through changes in the interaction intensity parame-

ters in different locations (i.e. β(L) parameters—see S1 Appendix), or through changes in the

movement of digital individuals in the model. Limited COVID-related statistics means fitting

the intensity parameters to data with a high degree of confidence is not possible. Therefore we

estimate their values based on available literature (details on how we perform this estimation

can be found in S3 Appendix). Indeed, the parameter values chosen when presenting the

results of possible interventions are designed to explore a large region of parameter space and

therefore aid in assessing the effects of model parameter uncertainties on scenario planning.

Alongside this, stochasticity in the model can contribute towards the uncertainty of results,

however, we find these uncertainties to be negligible for our model (see S3 Appendix).

For simplicity, in the baseline model we assume that all symptomatic individuals with mild

symptoms self-quarantine in their shelter with a low compliance of 30% (each individual has a

Fig 4. Left: An example from the dashboard showing daily infections by region for a single simulation. The red

sparklines indicate the trend over the course of the whole simulation. The slider position marks 84 days after the start

of simulation (i.e., the current time step). Darker regions indicate a higher infection count at this point in time. Right:

Comparison of the daily infection rate of each region across 10 simulations of the “learning centers” scenario, colored

by the peak infection rate seen in each region. Basemaps from [23].

https://doi.org/10.1371/journal.pcbi.1009360.g004
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70% chance of breaking quarantine at each time-step) to account for difficulty in communicat-

ing quarantine procedures, as well as the inability of many individuals to properly quarantine

given certain basic needs [31]. There are limited contract tracing efforts currently ongoing in

the settlement, however, these are not included in the model given their more recent introduc-

tion. As mentioned in Section 2.2.1, those with severe symptoms are by definition required to

stay in their shelter in line with [19]. Given the makeup of the shelters, quarantining individu-

als will not leave their shelter but may still interact with those in their shelter. All models are

seeded with 88 infected individuals across a variety of geographic regions based on data col-

lected on the 24th May 2020 [40]. The baseline model assumes a moderate transmission sce-

nario (R0� 2.0 − 3.0) as estimated in Truelove et al. [17]. Details of the rationale and precise

procedure for the initial seeding is given in S3 Appendix.

The primary metrics we use to assess and compare scenarios include the time to infection

peak, the height of the peak, and the total number of infected. Time to infection peak and the

height of the peak are important because they serve as a proxy for how quickly a settlement’s

response capacities will be overwhelmed and to what degree; all else equal, responders would

prefer a slower rise in infections in order to have more time to prepare for a surge. Total infec-

tions are important because they are a proxy of the settlement-wide impact of COVID-19.

3.1 Isolation centers

In many countries, those with symptoms which are not yet severe enough to require hospitali-

zation are encouraged to stay at home and self-quarantine. In the case of settlements such as

that in Cox’s Bazar, the density and living conditions of the residents mean that avoiding con-

tact with family in the home environment is not possible, and individuals frequently have to

leave their shelter to use facilities such as hand pumps and latrines. In an attempt to better

enable the isolation of symptomatic individuals, public health officials in the settlement set up

isolation and treatment facilities to house those who have tested positive for COVID-19 but do

not require hospitalization [41, 42].

We modelled two scenarios: (a) in which patients with mild and severe symptoms (not

requiring hospitalization) self-quarantine and are treated at home (referred to as “home-based

care”); and (b) in which symptomatic patients go to isolation and treatment centers regardless

of symptom severity up until they need to be hospitalized (we refer to this scenario as “treat-

ment center scenario”). A schematic of these scenarios is given in Fig 5.

To explore different was in which treatment centers are used in scenario (b), we varied the

average time delay between symptom onset and isolation—this is designed to encapsulate the

delay between a symptomatic individual developing symptoms and presenting themselves for

testing, the time taken to process the testing, and the the time spent in the isolation center. The

first of these is a clear behavioural assumption—to assess the effects of particular scenarios in

Fig 5. Isolation center scenarios. Left: Home-based care scenario where mild and severely symptomatic PoCs self-

quarantine in their shelters up to a compliance factor. Right: Scenario where mild or severely symptomatic individuals

go to isolation centers up to a compliance factor.

https://doi.org/10.1371/journal.pcbi.1009360.g005
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reality, further studies could be completed to validate the true value of the time delay. Further

details on these parameters are given in S1 Table.

Fig 6 presents the results of our simulations. We first simulate, the effects of varying the

average time delay between an individual developing symptoms and presenting themselves at

an isolation and treatment center with a. To disentangle parameter dependencies, we fixed the

time spent in isolation to 10 days and the compliance level for an individual to go to the centers

at 100%. This presents a best case scenario for the isolation of individuals. Here, we see that

varying the average time delay to isolation had little effect relative to the baseline home-based

care scenario (and is largely within the stochastic limit of the model—see S3 Appendix).

Fig 6. Isolation center simulation results. Simulated daily (7-day rolling average) and cumulative infections

measured in days since the beginning of the simulation. Left: the effects of varying the mean time delay to attend an

isolation and treatment center from symptom onset relative to the baseline home-care scenario while time spent in the

isolation and treatment center is fixed at 10 days. Right: the effects of varying the time spent in an isolation and

treatment center while keeping the mean time delay to the center fixed at 2 days. In both scenarios the compliance rate

that people present themselves for isolation is set too 100%. See S1 Table for a presentation of the cumulative number

of infections, peak intensity and peak timings for these scenarios.

https://doi.org/10.1371/journal.pcbi.1009360.g006
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Secondly we simulate the effects for varying the time spent in the isolation center, while fix-

ing the compliance to 100%. Here we also fix the average time delay to isolation to 2 days to

represent an optimistic yet realistic scenario. Again, we see this has little effect on the daily

infection rate relative to the home-based care scenario.

The reason for this similarity between the treatment and home-case scenarios is likely due

to the infectiousness profile presented in in S1 Table. Given the likely rapid transmission of

infection between those residing in the same shelter (see S3 Appendix for a breakdown of loca-

tion of infections in the baseline model), the majority of infections have likely taken place

before symptom onset. To test our sensitivity to this profile, we examined the effects of shifting

the peak of the infectiousness profile ± 10% but this yielded little difference in results.

The results presented in this section suggest that encouraging home-based care for individ-

uals with mild symptoms may not have a major negative impact on the number of daily infec-

tions as was the initial concern and therefore isolation center beds could be preserved for only

those requiring hospitalization.

3.2 Mask wearing

Widespread adoption of face masks has the potential to significantly reduce the transmission

of COVID-19 [43, 44]. In the settlement, surgical and cloth masks have been distributed to

many PoCs, with the majority being of the latter type [45, 46]. However, with limited supply

chains, surgical masks are often being washed and reused which can significantly alter their

efficacy [31, 47, 48]. The overall success of mask policies are contingent on both the efficacy of

the masks themselves and compliance with mask wearing. To test the potential effect of mask

wearing we simulate the use of masks with different efficacies in all settings outside the shelter,

with the exception of play groups, and with variable rates of compliance. More details on mask

wearing efficacies and our parameter choices can be found in S1 Table. As in [19], this is

encoded through a change in the interaction intensity parameters which are adjusted accord-

ing to:

b
�ðL;gÞ
¼ ½1 � CðLÞ � E�bðL;gÞ; ð1Þ

where β
�(L,g) is the new interaction intensity parameter, C(L) is the compliance with correct

mask wearing in a given location L, and E denotes the mask efficacy. Efficacy is defined as a

function of the mask material, as well as any degradation through incorrect reuse and washing.

While we could also specify certain geographic regions in which mask wearing takes place, at

present we assume that the location specific compliance factor, C(L), refers to all relevant loca-

tions in the settlement.

Fig 7 (upper) shows the simulated effect of mask wearing on the daily number of infections

as a function of compliance and mask efficacy. When mask efficacy is low, e.g. of the order of

20%, relative changes in compliance have a comparably small effect on the total proportion of

the population infected. As the average efficacy of the masks increases, these changes in com-

pliance can have a clearer effect, yet we see that further increases in average mask efficacy

beyond the 50% level may have diminishing returns in realistic scenarios. For example, obtain-

ing masks with average efficacies greater than 50% (which we assume to be equivalent to cor-

rectly wearing a single-layer cotton mask [43, 49, 50]) may be challenging and costly, especially

when efficacy is also a function of correct mask useage, and the resources required to achieve

this may be greater than the gain in transmission reduction. Overall it is important to note that

even though the majority of infections take place in the shelter (see S3 Appendix), partially

effective masks have the chance to prevent many of those infections which are key to bringing

the virus back into the home.
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Fig 7 (lower) illustrates how varying both compliance and efficacy affects both daily infec-

tion peak height and the total proportion of the population infected. As expected, both the

height of the daily infection peak and the total number of people infected decline as mask effi-

cacy and compliance increase. However, this figure also shows that peak height and total num-

ber of infections respond differently to changes in compliance or efficacy: peak height reduces

faster than the total number infected as compliance and efficacy increase (i.e, it is more sensi-

tive to changes in compliance and efficacy).

In the case of mask wearing specifically, it is informative to know where to utilize already

scarce resources—on increasing compliance or on increasing the average efficacy of the mask.

From Fig 7 (lower) we also see the relative sensitivity to the compliance and efficacy parameter

individually. For example, assuming an attainable efficacy of 50% [49] with a compliance rate

Fig 7. Mask wearing simulation results. Upper: Simulated daily (7-day rolling average) and cumulative infections

measured in days since the beginning of the simulation. Results show the effects of varying the compliance with mask

wearing in different locations under different assumptions regarding mask efficacy. The baseline model is the scenario

in which no masks are worn. See S1 Table for a presentation of the cumulative number of infections, peak intensity and

peak timings for these scenarios. Lower left: percentage change in daily infection peak height as a function of mask

wearing efficacy and compliance relative to the peak height of the baseline model. Lower right: percentage change in

total number of infections up to a fixed point in simulated time as a function of mask wearing efficacy and compliance

relative to the total number of infections simulated by the baseline model. The baseline model assumes no masks are

worn.

https://doi.org/10.1371/journal.pcbi.1009360.g007
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of 50%, it can be seen that an increase in compliance by 25% (which could be encouraged

through e.g. risk communication and community engagement (RCCE) exercises) has a similar

effect to increasing mask efficacy by 30% on the daily infection peak height. Such consider-

ations are operationally important as the wider use of lower efficacy masks which can be

homemade and reused, thereby increasing compliance, may be considerably easier than

importing large quantities of higher quality single use masks, such as surgical masks. Ongoing

monitoring of mask wearing compliance could be utilized to dynamically adapt resource allo-

cation to ensure they are used most efficiently.

3.3 Opening learning centers

Learning centers in the settlement have been closed since March 2020 in an attempt to mitigate

the spread of COVID-19 [51]. Although opening learning centers imposes a risk of infection

within the classroom, the closure of learning centers has serious consequences on the educa-

tional development of the children and may also have negative consequences on the epidemio-

logical development of the virus: when children are not in school, they participate in various

activities such as assisting with aid collection, going to communal centers, or meeting up with

other children and playing in groups outside which all serve as additional channels for inter-

mixing [26, 29, 30]. Indeed, since the learning centers have been closed, settlement officials

have observed an increase in children meeting up and playing in small groups [31].

To simulate the possible effects of opening the learning centers we allow all children

enrolled in the education system to go to school each day as described in Section 2.1.4. To

avoid multiple concurrent parameter variations, in previous intervention scenarios we fixed

the interaction intensity parameters as the relative sizes of these parameters were not as impor-

tant as others to understanding the potential effects of the intervention. However, in the case

of learning center opening the relative intensity of interactions in the indoor and outdoor envi-

ronments becomes key since when children are not in learning centers they are predominantly

in outdoor environments.

Currently, it is unclear how intense interactions in learning environments might be relative

to interactions with other children outside. To account for this unknown relationship, we var-

ied the ratio of the interaction intensity in both indoor and outdoor settings to the interaction

intensity in shelter settings while preserving the shelter-indoor-outdoor intensity hierarchy

described earlier in this section. See S1 Table for more details on the parameters choices for

these scenarios.

Fig 8 (upper) shows the effect of opening learning centers. The left set of panels demon-

strate that varying the indoor intensities can have a non-trivial effect on the progression of the

virus through the population, although the two scenarios—opening the learning centers or

keeping them closed—remain well distinguished from each other in both peak height and tim-

ings. The right set of panels show that varying the outdoor intensity can have significant effects

on both peak height and location, with some scenarios less well distinguished. This difference

occurs as, with the exception of learning centers, indoor locations outside of the shelter envi-

ronment are much more irregularly visited by children in comparison to the rate at which they

meet up outdoors with each other (see S2 Appendix for more details). Despite this, the mean

values of the scenarios clearly demonstrate different epidemiological trends.

Although opening learning centers may increase both the cumulative number of infections

and rate of disease spread, it might be expected that this growth observed in Fig 8 (upper) is

predominantly constrained to the younger age groups. However, in Fig 8 (lower) we see that

although opening learning centers does increase the chance of children being infected signifi-

cantly, this increase in infections rapidly breaks out of age-strata likely due to mixing in often
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Fig 8. Learning center opening simulation results. Upper: Simulated daily (7-day rolling average) and cumulative

infections measured in days since the beginning of the simulation. Results show the effects of varying indoor (left) and

outdoor (right) interaction intensity parameters relative to the interaction intensity parameter set for the shelter. These

intensity parameters are varied in both the baseline models and those with learning centers open. See S1 Table for a

presentation of the cumulative number of infections, peak intensity and peak timings for these scenarios. Lower:

Simulated number of cumulative infections in one age group produced by another age group normalised by group

sizes. We assume the baseline interaction intensities here.

https://doi.org/10.1371/journal.pcbi.1009360.g008
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inter-generational shelter settings. This, coupled with the increase in the cumulative number

of infections, suggests that by opening learning centers the virus will also likely infect individu-

als who were previously naturally shielded by a form of herd immunity.

3.4 Mitigation strategies for opening learning centers

Reopening learning centers is a priority because the longer the learning centers remain closed,

the longer children in the settlement go without school and risk having their educational

development stunted. In Section 3.3 we found that the opening of learning centers may facili-

tate the spread of COVID-19. However, the simulations described were only designed to

account for the effects of opening learning centers under the same conditions they operated in

before the virus was circulating. In this section, we explore several possible strategies for open-

ing learning centers with additional transmission mitigation strategies.

We model three possible strategies: i) adjusting the regularity with which children in the

settlement attend learning centers, and therefore limiting their mixing in these environments;

ii) opening more learning centers in alternative spaces; and iii) introducing specific measures

to lessen the interaction intensities in the learning centers. This final strategy could consist of

combinations of physical distancing in classrooms, mask wearing, increasing classroom venti-

lation, and more thorough cleaning and hygiene. For clarity, to limit the number of concurrent

parameters being varied, we compare all these scenarios to our baseline with no learning cen-

ters open and fixed intensity ratios. See S1 Table for more details on the parameters choices for

these scenarios.

The first mitigation strategy we test is changing the regularity with which children attend

learning centers. Normally, children enrolled in the educational system are expected to attend

their learning center each day; however, by halving the attendance rate and having children

only attend once every other day, mixing between different children can be reduced. This

intervention would also better enable physical distancing as the number of students in each

class is halved. The results of simulating this intervention are presented in the left panels of Fig

9. We see a significant delay in the number of days to peak infection, and a lower percent of

the population infected, as a result of alternating the days on which children attend learning

centers. While this strategy is clearly effective, we may see additional benefits by combining it

with other mitigation strategies.

Second, we investigate the possible effects of increasing the number of learning centers in

the settlement. To implement this strategy, we first distribute all children to the existing learn-

ing centers and then rank the learning centers by those with the biggest class sizes. These large

classes pose a higher risk of viral transmission between households, and therefore present a

particular danger. Once we have identified the centers with the largest classes, we add another

learning center in the same location to our model, thereby mimicking the strategic opening of

new learning centers to effectively halve the class sizes of the most crowded centers. Once

these new learning centers have been added to the model, we redistribute children from the

crowded classrooms to the new centers. As shown in the middle panels of Fig 9, the effect of

opening a limited number of additional learning centers is negligible. Relative to the approxi-

mately 1,200 learning centers already operating in the settlement, opening 10–100 new centers

(which we chose to be the upper-end of a feasible implementation but may already be logisti-

cally challenging) does not alter the mixing of children enough across the settlement to have a

significant impact.

Finally, we examine the effects of changing the intensity of interactions within the learning

centers, while keeping the other indoor, outdoor, and shelter interaction intensity parameters

fixed. The range within which we vary these interaction intensities (20–90%) corresponds to

PLOS COMPUTATIONAL BIOLOGY Operational response simulation tool for epidemics within refugee and IDP settlements

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009360 October 28, 2021 17 / 25

https://doi.org/10.1371/journal.pcbi.1009360


the changes in interaction intensities that result from various combinations of physical dis-

tancing, mask wearing, and increasing ventilation.

Fig 9 shows the simulated effects of reducing interaction intensity in the learning centers

relative to the baseline learning center intensity described above. Reducing learning center

interaction intensities has the potential to significantly affect the height and positioning of the

daily infection peak, as well as the total number of individuals infected. When learning center

interaction intensities fall below 20–35%, daily infection statistics begin to approximate the

scenario in which learning centers remain closed, thereby almost completely mitigating the

effects of opening the centers. As discussed in Section 3.2 and S1 Table, the upper end of this

relative intensity range could correspond to enforcing mask wearing alone if compliance and

the efficacy of the masks worn are high or a combination of mask wearing and physical

Fig 9. Simulated daily (7-day rolling average) and cumulative infections measured in days since the beginning of the simulation. Black solid lines represent the

baseline policy in which learning centers are closed. Black dashed lines represent the policy in which learning centers are open with no additional mitigation strategies.

Results show the effects of opening learning centers under three conditions: adjusting the regularity with which children attend learning centers (left); opening additional

learning centers (middle); reducing interaction intensities in the learning centers through strategies such as physical distancing, masks, and improved ventilation (right).

Note that in the middle panel, the green line overlaps almost precisely with the baseline. See S1 Table for a presentation of the cumulative number of infections, peak

intensity and peak timings for these scenarios.

https://doi.org/10.1371/journal.pcbi.1009360.g009
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distancing. The lower end may correspond to the combination of physical distancing in clas-

ses, mask wearing and improved ventilation [43, 44, 50, 52, 53]. With respect to this latter

combination, it is important to note that ventilation options in schools vary with the type of

classroom, e.g. some learning centers are built from bamboo allowing for more natural air to

flow, while others appear to be smaller, concrete rooms [54, 55]. In enclosed settings, ventila-

tion could consist of opening windows and doors as well as using electric fans to increase air

flow.

In summary, our simulations suggest that implementing a combination of mask wearing,

physical distancing, and improved ventilation can significantly decrease the number of infec-

tions and potentially make it possible to open learning centers safely. While physical distancing

may not be possible in classrooms given the current space available [56], this could be enabled

by the reduction of class sizes induced through alternating attendance.

4 Discussion

Modelling the effectiveness of different operational interventions is important for future plan-

ning purposes. In a refugee settlement, implementing such interventions requires significant

advance mobilization as well as operational and financial support. By simulating the possible

effects of operational interventions prior to their introduction, and incorporating the results of

these simulations into decision making processes, intervention priorities can be better

identified.

In this paper we present an agent-based modeling approach, adapted from the JUNE frame-

work [19], to simulate disease spread in refugee and IDP settlements. The movement of people

and their interactions are modeled at the individual level, with parameters informed by open-

source datasets, empirical observations and recent research literature. Our approach first con-

sists of building a ‘digital twin’ of the settlement in which the geographic layout is defined. Vir-

tual individuals are included into the model with different demographic attributes mimicking

real world statistics and family and shelter structures are reproduced. Locations in which indi-

viduals may interact are also included, such as learning spaces, distribution centers or hand

pumps and latrines. Secondly we design a simulation engine which captures what people in

the model do during the day, how they interact and how diseases may be transmitted. This

underlying structure can then be used to model different operational interventions by altering

the movement and interactions of different subsets of individuals in the model, or by closing

certain venues. Finally, we present a dashboard designed to present the multiple insights and

uncertainties inherent to this modeling approach which can serve as a shared tool for conver-

sation and iteration between modelers and decision makers.

This work focuses on the spread of COVID-19 in the Cox’s Bazar refugee settlement in Ban-

gladesh, although the approach is designed to be generalizable to other settings. Given incom-

plete testing and case statistics, we have focused on modelling the relative effects of various

operational interventions on key statistics such as the daily infection rate, as opposed to pro-

ducing precise forecasts. The interventions presented in this paper are chosen based on those

deemed most important by public health officials operating in the settlement according to an

assessment of the short and medium-term needs including feasibility and timeliness. However,

there are also additional, more nuanced, questions about these interventions which could be

investigated using our approaches, and we leave this to future work.

We analyzed the possible effects of alternate home-case delivery mechanisms, mask

wearing based on compliance and the type of masks worn, and (re)opening learning centers

under various scenarios. Our findings suggests that the isolation of people with mild to severe

symptoms will likely have little effect given the assumed infectiousness profile of symptomatic
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individuals. Mask wearing, however, is found to be have potentially large positive effects, miti-

gating significant proportions of disease spread if worn in all indoor locations with the excep-

tion of shelters. For example, cumulative infections over the period of the simulation are

reduced by 50% when half of the population comply with wearing cotton-type masks, and are

reduced further when increasing compliance or mask efficacy. Alternatively, the opening of

learning centers could present challenges, with the risk of increasing the growth rate of the epi-

demic. However, we also explore several strategies to opening learning centers, which if used

in combination (such as increased ventilation, mask wearing and reducing class sizes), could

greatly mitigate many of these risks.

One of the main limitations of this work so far has been the possible validation of model

predictions with real world data—since case and testing data availability has also been limited.

Our approach to understand the potential impact of interventions has been simulating the

effects of interventions as if they were in place from the beginning of the simulated period. If

required, however, in the event that more precise data becomes available, we expect to be able

to perform further retrospective validations of the results by leveraging the flexibility of the

model which can be fitted to historical trends, enabling the provision of future forecasts, as

well as the simulation of different sequences of measures being implemented at different points

in time (see example of this in [19]). Indeed, a serological study has been carried out through-

out December 2020 in the Cox’s Bazar settlement which could serve as a key source of data for

fitting, evaluating and constraining our modeling approach. In future work, we also plan to

assess the impact of various vaccine distribution strategies in these settings.

Alongside up-to-date testing data for model validation and fitting, additional data on

healthcare seeking behaviour in response to epidemic outbreaks would also be highly benefi-

cial. This would allow modeling works to better factor in cultural differences in seeking differ-

ent kinds of care, as well as the impact of potential misinformation and disinformation

spreading throughout populations which could affect compliance with interventions. To fully

utilize this, better clinical data on the effects of different healthcare seeking behaviour is criti-

cal. Further, we make the assumption that comorbidity prevalence in the settlement popula-

tion is comparable to the country of origin (here assumed to be Myanmar), yet this is a

simplification. Better data on comorbidities of the specific population in question, alongside a

deeper understanding of the clinical ramifications, could significantly improve the accuracy of

hospitalization and morality statistics. Finally, ongoing data collection on compliance levels

with interventions would allow for the honing of modeling works to more specific scenarios

and reduce the number of free parameters.

In any modeling approach it is important to tailor results and outputs to the specific envi-

ronments and questions which need to be answered by decision makers. The approach pre-

sented in this paper has been developed in close collaboration between modelling teams and

those operating in the Cox’s Bazar settlement. Research questions and operational scenarios

have been defined jointly by the different teams involved in the project. In fact, we have found

that the development of the data visualisation tool plays an important role in helping translate

between groups with a wide range of expertise. It is crucial that public health specialist and

decision makers have full understanding and ownership of the results of any modeling work.

With this work we hope to encourage future multidisciplinary modeling efforts to engage fully

with end users to ensure meaningful discussions take place and decisions are taken informed

by the best possible science.

While the focus of this work has been on intervention planning during an evolving out-

break, these methods and techniques are applicable to future epidemics and different diseases.

Modeling work can often be reactionary, however, through the use of scenario planning strate-

gies such as those introduced in this paper, we hope to inspire further efforts with a focus on
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anticipatory action. Indeed, the results from such work could not just help for contingency

planning, but also incorporated into designing settlement layouts to attempt to mitigate dis-

ease spread before it reaches epidemic levels.
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