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The coordination of humanitarian relief, e.g. in a
natural disaster or a conflict situation, is often
complicated by a scarcity of data to inform planning.
Remote sensing imagery, from satellites or drones,
can give important insights into conditions on
the ground, including in areas which are difficult
to access. Applications include situation awareness
after natural disasters, structural damage assessment
in conflict, monitoring human rights violations or
population estimation in settlements. We review
machine learning approaches for automating these
problems, and discuss their potential and limitations.
We also provide a case study of experiments using
deep learning methods to count the numbers of
structures in multiple refugee settlements in Africa
and the Middle East. We find that while high
levels of accuracy are possible, there is considerable
variation in the characteristics of imagery collected
from different sensors and regions. In this, as in
the other applications discussed in the paper, critical
inferences must be made from a relatively small
amount of pixel data. We, therefore, consider that
using machine learning systems as an augmentation
of human analysts is a reasonable strategy to
transition from current fully manual operational
pipelines to ones which are both more efficient
and have the necessary levels of quality control.

2018 The Author(s) Published by the Royal Society. All rights reserved.
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This article is part of a discussion meeting issue ‘The growing ubiquity of algorithms in
society: implications, impacts and innovations’.

1. Introduction
Humanitarian relief is required in response to many types of crises, including both natural and
man-made disasters. It is typically a short-term intervention aimed at the immediate saving of
lives and reduction of suffering until longer term provisions can be made.

For this response to be effective, reliable and comprehensive information is critical, as early as
possible, about the effects of the crisis: how many people have been affected and (as the response
gets underway) how many of those have actually received relief, out of the total number targeted
for assistance.

In a crisis situation, collecting this information may be difficult. For example, in a natural
disaster such as a flood or earthquake, roads may become impassable, or in man-made
emergencies there may be conflict; furthermore, the areas affected might be large, making it
impractical to survey the situation thoroughly from the ground. In some cases, the numbers
above might be arrived at essentially through a series of informed guesses, particularly during
the initial hours or days after the onset of an emergency, where the only available information
could be anecdotal reports from eyewitnesses. Because of this, remote-sensing data—particularly
from satellites—is useful. Satellites can be tasked to collect images of the affected area, and it can
be possible to obtain high-resolution imagery (50 cm resolution or less) within a matter of days,
depending on certain factors including cloud cover.

With this imagery, various analysis tasks can be carried out depending on the crisis. In
situations involving refugees or internally displaced people (IDPs), the numbers of people in
settlements (either planned or informal) can be estimated from the numbers of different types of
structures. Damage assessment can be done, e.g. by counting and mapping numbers of destroyed
buildings. Other humanitarian analysis tasks may not be directly related to the provision of
relief—for example, conflict documentation for naming and shaming, or collection of evidence
for litigation. These procedures generally involve skilled human analysts visually interpreting the
imagery. Increasing the degree of automation would have potential benefits in terms of providing
results more quickly, and in being able to take advantage of the increasing availability of high-
resolution satellite imagery to provide more frequent updates. However, routine deployment of
machine learning-based systems for these purposes has so far been elusive. Algorithmic analysis
is currently done for some types of analysis, though generally on lower resolution data (e.g. from
Landsat or Sentinel sensors) in fire detection, standing water analysis or land cover mapping, for
instance.

The structure of the rest of the paper is as follows. In §2, we briefly review applications of
machine learning for remote-sensing data in general, and in §3 discuss the principal existing work
specifically on humanitarian applications. In §4, we give experimental details of a case study on
counting structures in refugee settlements, then discuss and conclude in §§5 and 6, respectively.

2. Machine learning and remote-sensing data

(a) Remote-sensing data
Advances in aerospace engineering and remote-sensing technologies have resulted in an
increasingly diverse array of earth observation systems; these capturing unprecedented quantities
of imagery, measuring a range of geophysical parameters and operating in a range of satellite
orbits. The distribution of the data captured by these is managed by a number of satellite
operators and data providers. The application and suitability of remote-sensing imagery in
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humanitarian efforts depends on satellites’ spatial resolution, revisit capability, spectral resolution
and radiometric resolution.

There is no universal consensus on how to categorize resolution in remote sensing, though
for the purposes of this article we define high resolution as 1 m or less, medium resolution as
1–10 m and low resolution as more than 10 m. We note that these are non-standard categories:
for example, in the Copernicus data catalogue,1 the threshold for ‘high resolution’ is 30 m. We
use these divisions here because of the scope of machine learning applications possible within
each category. With sub-metre resolution, it is generally possible to identify commonplace objects
of interest such as buildings and vehicles. People can be seen in drone imagery, where resolution
can be below 10 cm, but are not generally visible even in high-resolution satellite images (although
crowds can be visible and shadows cast by individual persons may be visible depending on
conditions). For resolutions of a few metres, all the above types of objects are more difficult to
identify, and, therefore, methods such as object detection are more limited in their applications,
and super-resolution algorithms can be applicable. For low-resolution data, machine learning
methods are even more restricted, for example to land cover mapping or macro-scale analysis,
e.g. of climate or ecology.

High-resolution imagery sources include Ikonos-2 (0.8 m panchromatic or 3.2 m RGBiR),
Orbview-3, IRS-P6, EROS A&B (0.7 m), QuickBird (0.61 m panchromatic or 2.44 m RGBiR),
Pleiades (0.5 m panchromatic or 2 m multispectral), GEOEYE-1 (0.46 m panchromatic and
1.84 multispectral (RGB and NiR) resolution) and Kompsat (0.7 m). Moderate- or low-
resolution imagery includes imagery captured by satellite sensors such as Planet (3–5 m),
SPOT (1.5–2.5 m), Sentinel-1 (5 m in Stripmap mode), Sentinel-2 (10–60 m with 13 spectral
bands), AVHRR/3 (1090 m), Geostationary Operational Environmental Satellite (GOES, 1000 m),
Moderate Resolution Imaging Spectroradiometer (MODIS, 250–1000 m), Landsat (15–120 m) and
ASTER (15–90 m). Very High Spatial Resolution (VHSR) imagery sources include WorldView
(0.3–0.5 m).

The number of spectral bands provided by each sensor is significant for the types of
applications which are possible. For example, the multispectral WorldView sensors have enabled
land use and land cover mapping to be conducted at an unprecedented level of spatial detail.
Image processing techniques including RGB-pansharpening and multispectral-pansharpening
also have broadened applications.

Another issue with regards to machine learning application is the consistency and calibration
of different sensors. The sources that we refer to above as ‘low resolution’ in the list above are all
sensors which image the entire globe at regular intervals, and where the corresponding pixels
at different time frames are produced by the same measurement process; therefore, machine
learning models can be transposed across space and time on this data relatively easily. The ‘high-
resolution’ sources above are limited by capacity, as satellites such as WorldView and Pleiades are
unable to transmit all of the imagery they capture back to the Earth. They are operated on a tasking
basis, where images for certain areas are requested, and, therefore, the available data from these
sources is a patchwork of images at different places and times. For some areas, e.g. remote parts
of developing countries, the most recent high-resolution imagery may be several years old, so
that tasking new imagery is necessary if such data are needed, and historical analyses are limited.
In addition, the cameras on the satellites are rotated in order to capture the areas of interest, so
that the angle of incidence varies and even images of the same place taken by the same satellite at
different times may not be directly comparable. Hence, in machine learning terms, high-resolution
imagery not only provides greater scope in terms of recognizing and segmenting objects on the
ground, but also makes it is more necessary to consider dataset shift and model generalization
issues.

Among all sources, satellite location revisit cycles vary widely. For example, while the GOES
system can provide continuous and timely environmental and atmospheric observations over the
Earth’s surface, MODIS has a revisit cycle of 1–2 days, Landsat-7 has a revisit cycle of 16 days

1https://spacedata.copernicus.eu/documents/12833/14545/DAP_Release_Phase_2_1.0_final
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and Sentinel-1 6 days. As the operational use of satellite systems can be hindered due to limited
revisit cycles, complementary systems such as constellations of CubeSats have been suggested as
a means of overcoming these limitations [1].

(b) Machine learning with remote-sensing data
Machine learning methods have been in routine use for the analysis of remote-sensing data
for some time. One of the earliest applications was land cover classification with multi-spectral
data (e.g. Landsat), often using a random forests or support vector machines, and this has been
standard practice for around two decades. The application of machine learning methods for the
efficient detection and classification of remote-sensing imagery have been reviewed previously
and have focused on neural networks, support vector machines, decision trees and random forests
and k-nearest neighbours [2–5].

Most machine learning approaches to image analysis currently are variations of deep
learning methods, which have substantially improved the state of the art in various application
domains, and for which remote-sensing applications are now emerging. Whereas previously it
was normal to split up an analysis task into separate steps (e.g. selection or hand-coding of
features, followed by application of a machine learning model, followed by post-processing),
one important aspect of deep learning has been increased ‘end-to-end learning’. In this type of
set-up, the model simultaneously learns a feature representation, intermediate processing steps
and tunes parameters for generating the final output. This requires large training datasets and
computational power, but often results in strikingly better performance than was possible with
previous methods. Specific discussion about deep learning methods in remote sensing can be
found in [6,7].

Deep learning autoencoders are a type of network structure of particular significance in remote
sensing. Autoencoders for images are models which have the ability to map each pixel in an image
to a new value. Thus, they are useful for segmentation tasks such as land-cover mapping, in which
we want to categorize each pixel as belonging to the class of forest, water, urban area and so on.

Object detection methods are another area of deep learning which has an important impact in
terms of remote-sensing applications. Whereas autoencoders are generally used for mapping the
spatial extent of ‘stuff’ (such as water, road surface or crop land), object detection methods are
used for mapping the location of ‘things’ (such as cars or buildings). Object detection methods
generally output a bounding box—i.e. the top, bottom, leftmost and rightmost limits—of each
object detected in an image, for example with region-proposal convolutional neural networks
(RCNNs), of which Faster-RCNN is a common method [8]. Other methods are able to do instance
segmentation, in which for each detected object the model outputs which pixels in the image are
assigned to that object. We carry out such experiments below with the Mask RCNN model [9].

Deep learning applications to satellite imagery include the use of convolutional neural
networks for high-precision land-cover mapping [10] and scene classification [11]. One issue with
deep learning models is that they are rarely practical to train from scratch for a new problem,
unless there is a training dataset of significant size and the corresponding computational power
available to train a network to convergence. Instead, it is usually necessary to take a network pre-
trained on another dataset and use transfer learning to adapt it to the new problem. An example
of transfer between remote-sensing scene classification problems is given in [12].

3. Humanitarian applications
Remote-sensing technologies are increasingly being used to monitor, mitigate and guide
humanitarian responses to conflict, human rights violations and man-made or natural disasters
[13–16]. This includes the monitoring and documentation of large-scale displacement and
destruction caused by conflicts and the early warning of imminent hostilities or border conflicts.
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The use of remote-sensing technology to study violent conflict and human rights has increased
considerably over the last decade, and is especially valuable in difficult-to-reach or dangerous
conflict zones where field observations are sparse or non-existent [17].

Fire detection products derived from satellite imagery may be used as an input into
early warning systems to flag potential human-rights violations or humanitarian emergencies.
For instance, MODIS imagery has been used to identify burning campaigns in human
settlements in Darfur in Sudan during periods of ethnic violence [18–20]. In Kenya,
the United Nations used satellite imagery to locate areas where violence had potentially
occurred [21].

Night-time lights, as measured using satellite imagery, can be used for monitoring unfolding
humanitarian crises [22,23]. Using satellite images acquired from the Defense Meteorological
Satellite Programme’s (DMPS) Operational Linescan System (OLS), Li & Li [22] investigated the
spatial and temporal patterns of night-time light in Syria, its international border and surrounding
regions. They also observed a moderate correlation (R2 = 0.52) between night-time light loss and
numbers of IDPs in districts. In the Caucasus region of Russia and Georgia, fluctuations in the
night-time lights of cities were evaluated from 1992 to 2009, to detect conflict-related events
such as large fires and large-scale movements of populations [23]. A review of research and
applications using remote sensing in conflict and human rights scenarios can be found in Marx &
Goward [24] and Witmer [17].

Remote sensing has been used widely to map the effects of conflict, for example determining
structural damage to buildings and critical facilities; and damage to transportation networks
which in turn may affect humanitarian access [3,25]. For example, high-resolution satellite
imagery has been used to rapidly assess damage to agriculture in the Gaza strip [14], impact
craters, debris and damaged structures in Eastern Ghouta in Syria [15].

Images acquired using remote-sensing technologies have been employed for monitoring and
guiding humanitarian responses to natural disasters including floods, earthquakes, volcanoes,
tropical cyclones and landslides. For example, in response to tropical cyclone GITA-18, which
affected the Tongatapu Island in Tonga, building damage density was assessed using Pleiades
and WorldView-2 satellite imagery [26]. Cooner et al. [27] examined using high-resolution
mulitspectral and panchromatic remote-sensing data to detect urban damage following the
earthquake event near Port-au-Prince in Haiti in 2010. In this study, Cooner et al. [27] examined
machine learning algorithms including various neural network architectures and random forests
to detect damage caused by the earthquake. Complementary systems have been proposed for
monitoring areas being affected by natural disasters, such as constellations of nanosatellites or
CubeSats [1]. In this study, CubeSat constellations are proposed as a way of overcoming revisit
time limits of VHSR satellite systems, which reduce their operational use for the management of
disasters.

The number of refugees and internally displaced persons (IDPs) is rapidly increasing, due to
conflict situations, man-made or natural disasters, and other crises [28]. According to the United
Nations High Commissioner for Refugees (UNHCR), there were approximately 65.6 million
forcibly displaced people at the end of 2016, including 40.3 million IDPs, 22.5 million refugees
and 2.8 million asylum seekers [28].

IDPs who are not considered urban IDPs [29] usually reside in self-settled or planned
settlements, where essential facilities may be provided by national or international humanitarian
relief organizations [28]. As such, accurately estimating refugee occupancy rates in settlements
is essential for planning and managing efficient relief operations, and enhancing logistical
support for allocating survival contingencies. Refugee population numbers can be inferred from
the number and size of structures within refugee settlements including tents and improvised
shelters [30]. The immense size and complexity of refugee settlements, the potential number of
structures and the different types, are challenges when producing accurate estimates. On-the-
ground surveys of settlements including structures can be labour-intensive, time-consuming,
costly and dangerous. However, these in situ measurements offer advantages in terms of assessing
whether structures are occupied or not.
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With the continuous emergence of satellite sensors providing data of increasing spatial and
temporal resolution, the role of remote-sensing-based applications has become increasingly
important for supporting humanitarian relief operations, especially in remote or difficult to
access areas [31,32]. Remote sensing including high-resolution satellite imagery has been used
to provide evidence of new refugee settlements [33], and to develop detailed maps of settlements
by detecting and classifying infrastructure and structures within these [34,35].

Current practice focused on detecting and classifying structures in settlements relies on the
manual analysis of remote-sensing data, requiring the identification and interpretation of high-
resolution satellite imagery by trained analysts [30,36–38]. Although highly accurate, this work
is time consuming and is labour-intensive, which may limit its applicability in response to
crises situations, or in large areas that require regular monitoring over long periods of time.
Decentralized approaches, for example crowd-sourcing or distributing the manual analyses of
satellite imagery among several analysts, have been used to improve the scale and timeliness of
these tasks. They can also create additional management and quality-control challenges, though.

Other more efficient automatic or semi-automated methods including machine learning are
showing promise in improving the efficiency of analyst workflows (e.g. [30,34,38–41]). In terms of
computer-assisted building detection, several case studies have been conducted, included pixel-
based classification (e.g. [30]), object-based classification rule sets (e.g. [38,39,41]) and approaches
based on mathematical morphology methods incorporating morphology thresholds (e.g. [30,34,
40,42]). However, automating the detection and classification of structures using satellite imagery,
with sufficient accuracy to be practical, is still an open problem.

(a) Public data science challenges in humanitarian remote sensing
In recent years, numerous challenges have been launched among the global data science
community, the object of these being to crowd-source the development of machine learning
techniques for automating the analysis of remote-sensing imagery, with some of them, in
particular, in the context of humanitarian or sustainable development efforts.

The theme of the DIUx xView 2018 Detection Challenge was to detect emerging natural
disasters.2 The DeepGlobe CVPR 2018-Satellite Challenge focused on detecting roads, buildings
and land cover,3 while a DigitalGlobe challenge focused generally on the creation of accurate
maps for potential use in future disaster response situations.4 A recent challenge set by the
Defence Science and Technology Laboratory (Dstl) requested competitors to develop machine
learning methods to automatically detect and label significant features such as waterways,
buildings and vehicles using multi-spectral satellite imagery,5 for which the winning entries were
all autoencoder models. The Crowd AI mapping challenge6 is aimed at the detection of buildings,
for use in humanitarian response in areas which are otherwise not mapped in detail.

Other crowd-sourced challenges have offered remote-sensing data for monitoring adverse
anthropogenic impacts on the Amazon rainforest, including deforestation, biodiversity losses and
habitat losses.7 The Data for Climate Action Challenge offered satellite imagery (3–5 m resolution)
as part of a broader pool of data resources to research insights and solutions for climate-change
mitigation and adaptation, and sustainable development efforts.8 Another challenge offered very
high-resolution imagery (less than 10 cm) from the UAVs for Disaster Resilience Program to
accelerate and improve humanitarian and development efforts of the South Pacific Island.9 The

2https://xviewdataset.org

3https://deepglobe.org

4https://blog.digitalglobe.com/developers/the-spacenet-challenge-round-2-has-launched

5https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection

6https://www.crowdai.org/challenges/mapping-challenge

7https://www.planet.com/pulse/forest-recognition-planet-launches-kaggle-competition

8https://www.dataforclimateaction.org

9https://werobotics.org/blog/2018/01/10/open-ai-challenge
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objective of this challenge was to develop machine learning classifiers to automate the analyses of
the imagery, including developing baseline maps and conducting damage assessment. Examples
of campaigns aiming to crowd-source the analysis of satellite imagery during crises include
Amnesty International’s Decode Darfur10 and Decode the Difference11 projects.

4. Case study: structure counting in refugee settlements
As discussed above, counting the numbers of different types of structures in a refugee or IDP
settlement is a common analysis task. In practice, this is currently routinely done by human expert
analysts, though the repetitive nature of this task makes it a natural candidate for automation. A
single settlement may have tens of thousands of structures, and identifying them from imagery
is a task which can take an experienced analyst some days, with quality control checks by a
second analyst adding further time. We show examples of structures in a variety of refugee/IDP
settlements mapped by UNOSAT in figure 1.

As an object detection problem, there are three main difficulties in practice. First, there is a
high degree of variation between different settlements, making it difficult to train a model on
one settlement and have it generalize well to others. This variation can be due to the settlements
being in regions with different terrain (e.g. desert or savannah), with different types of structures
(e.g. tents, semi-permanent structures or improvised shelters made of any materials to hand), or
because imagery is collected by different sensors, in different weather conditions or time of day.

Second, the objects being detected are small and sometimes clustered close together. An
improvised shelter 3 m across manifests in 50 cm resolution imagery as a blob 6 pixels across. Such
shelters may be made from natural materials to hand in the area, making them appear similar
to the rest of the terrain. Distinguishing such structures from other objects (including rocks,
bushes, small uninhabitated structures and so on) can be a matter of judgement requiring domain
knowledge and reasoning about the context—which, despite recent advances in object detection
with deep learning algorithms, is often difficult even for current state-of-the-art methods.

Third, for this task a high degree of accuracy is needed. Because the results of the analysis are
used to inform critical decisions about the resources needed to maintain a settlement, current
quality control procedures are rigorous. Even if we view the model outputs as not the final
product of themselves, but as sets of candidate structure detections which could speed up the
work of an analyst, unless precision and recall are high enough it can take more work for the
analyst to correct an incomplete set of detections than to start from scratch. False detections are
more of a problem than missed detections, since identifying them and then cleaning them up
(within an interface such as ArcGIS) is a lengthier process.

(a) Data
The data used in this case study was annotated high-resolution imagery from 13 refugee/IDP
settlements listed in table 1. These images were in some cases composites of separate images
collected by different satellites and/or at different times, in the cases that there was no image
available covering the entire settlement at once. Three bands were used where possible, though
for some settlements only a panchromatic channel was available. Accompanying these images
were longitude/latitude point locations of structures within those settlements, identified by
experienced analysts with quality-control checks done by a secondary analyst. The points data
for most of the settlements we analysed in this study, as well as maps giving more context for the
settlements, is publically available online.12

10https://decoders.amnesty.org/projects/decode-darfur

11https://decoders.amnesty.org/projects/decode-the-difference

12http://www.unitar.org/unosat/maps and https://data.humdata.org/organization/un-operational-satellite-appplicati
ons-programme-unosat.
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Doro, South Sudan
©2018 CNES, airbus

Dalakaleri, Nigeria
©2018 DigitalGlobe

Juba, South Sudan
©2018 DigitalGlobe

(b)(a) (c)

Figure 1. Examples of satellite imagery of refugee/IDP settlements in which dwelling structures are visible.

Table 1. Refugee/IDP settlements analysed in these experiments. Doro 1 and Doro 2 refer to the same location at different times
(analysis was carried out for snapshots in 2014 and 2017, respectively).

settlement country structures area (km2) image bands

Ajuong South Sudan 13 395 18.2 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Doro 1 South Sudan 16 463 8.0 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Doro 2 South Sudan 12 819 8.0 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ganyel South Sudan 3415 29.3 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HTC Iraq 4253 2.1 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Juba South Sudan 11 096 0.8 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

K-18 Iraq 1247 0.5 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Khaldiyah Iraq 3844 1.5 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Muna Nigeria 2822 0.7 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ngala Nigeria 4488 1.3 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Nyal South Sudan 5249 54.0 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Yida South Sudan 17 064 26.9 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Wau South Sudan 5177 0.13 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The images were split into 300 × 300 pixel tiles, and in order to train segmentation models we
manually traced out polygons corresponding to each structure, for a total of 87 137 structures.
Preprocessing code was written to augment these data for use while training, varying the
brightness and scale, and randomly rotating and flipping the tiles. This augmentation step was an
important stage of data preparation since in contrast to general computer vision problems, here
we have data from a relatively small number of contexts; tiles look relatively similar within each
settlement, increasing the risk of overfitting.

(b) Model
To carry out object detection, we use the Mask-RCNN model [9], which has shown good
performance on detection and segmentation problems in other domains. This model is
constructed to simultaneously predict the bounding boxes of objects in an input image, the class
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of each of those objects and a pixel segmentation mask. The ability to provide pixel segmentations
is a particular attraction in this application, as it allows computations about the total roof area of
structures in a settlement.

The structure of the Mask-RCNN is that an input layer is first connected to a feature extraction
stage, typically using a different pre-trained network. We use ResNet101 [43] pre-trained on
ImageNet and with the head layers removed. Connected to the upper feature extraction layers,
there are three output sub-networks, for object bounding boxes, classes and segmentation masks,
respectively. Bounding boxes are identified by associating objects with anchor boxes, which are
a set of overlapping rectangular regions in the image with varying scale and aspect ratio, and
then outputting offsets from the anchor box. Pixel segmentations are predicted in the form of
a fixed-size grid (we use 28 × 28) aligned over the bounding box. Further details of the Mask-
RCNN model structure can be found in [9]. We used a modified version of an open source
implementation.13

(c) Experiments
We carried out two sets of experiments with this model and data. The first was to test the
extent to which structures in a settlement can be detected and enumerated by a model trained
only with images from other settlements. This corresponds to the situation that imagery for a
new refugee settlement is available, and we require an immediate count using a pre-trained
model (trained in the past on other refugee settlements). We refer to models trained in this
way as base nets for each settlement; the base net for some settlement is trained with all
available data from other settlements. The second set of experiments looked at the change in
performance when a small amount of training data from the target settlement is available,
so that we can carry out transfer learning to improve the fit of the base net to the specific
settlement that needs to be assessed. This would correspond to the case that a new settlement
is to be analysed, but that there is a little time available to provide locations of some reference
structures and update the model, in order to approve accuracy. In these experiments, we used
different proportions of the area of the test settlement as adaptation data. Adaptation data were
randomly selected from the settlement, though we note that more effective strategies may be
possible, for example, ensuring that there is adaptation data with a balanced selection of the
different types of structures visible in the settlement. For a particular adaptation dataset, we
evaluate on the remainder of the area of the settlement. Training of networks took 2–3 h on a
machine with 4 GPUs, whereas each adaptation phase took approximately 20 min of training
on a single GPU. Detection using a trained model on a single GPU took around 400 ms per
300 × 300 tile, or approximately 18 s km−2 of imagery (at 40–50 cm resolution). This is already fast
enough for practical application and could likely be considerably speeded up further with model
compression.

Results are shown in figure 2, with precision and recall calculated for each settlement with
the basenet and the adapted network using from 10 to 50% of the true structures for training.
We evaluate precision and recall by considering any detected bounding box that coincides with a
true bounding box with intersection over union (IoU) greater than 0.25 as a true positive. Average
precision (AP) figures are given, which are the areas under these curves. In general, the accuracy
increases when adaptation data are available, as we would expect; though the extent to which
this is true depends on how unique each settlement was with respect to the other settlements
used for training each network. We also note that the lowest performance was for the settlements
in which the density of structures was very high. The two settlements with significantly lower AP
than the others, Juba (pictured in figure 1 and Wau, have on average 17 497 structures per km2.
The best-scoring two settlements for the adapted models were K18 and Khaldiyah, with average
2545 structures per km2. The model has trouble distinguishing individual structures when they
are dense and even adjoining each other. Interestingly, these two best-scoring settlements had

13https://github.com/facebookresearch/Detectron
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Figure 2. Precision–recall curves for basenets (tested on entire settlement) and models augmented with 50% of settlement
data (tested on remaining 50%).

only greyscale (panchromatic) imagery, suggesting that the characteristics of the settlement are a
much more important factor for accuracy of structure detection than the availability of multi-band
colour images.

The extent to which adaptation data helped detection accuracy is shown for sample settlements
in figure 3, where we zoom in on the high-precision, high-recall area of each curve and show the
different between the basenet and each of the adapted nets. For some settlements, adaptation data
give a strong improvement; other less so, and sometimes with accuracy in fact decreasing. Note
that for each quantity of adaptation data, the test set changes each time (as we only evaluate on
parts of the settlement which were not used for adaptation training). Hence the performance is
not guaranteed to increase with increasing adaptation data.

Figure 4 illustrates these results by showing detections for one sample tile in Doro settlement.
The basenet is unable to detect several of the structures, because there are structures with
appearances particular to this settlement. With a small amount of adaptation data, these false
negatives are corrected. Figure 5 shows detections across the extent of an entire settlement,
compared to ground truth locations. Although some false positives are evident, the overall
structure of the settlement is clearly detected. Post-processing to remove outliers is likely to
improve results further.
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Figure 3. Detail of precision–recall curves showing changes when varying levels of adaptation data are available for specific
settlements.

Doro2-X4200Y1500-UNOSAT ground truth Doro2-X4200Y1500-adapted net (10%) detections Doro2-X4200Y1500-base net detections(b)(a) (c)

Figure 4. Examples of structure detections in Doro settlement. (a) Ground truth locations of structures; (b) detected structure
polygons with adapted network and (c) detected structure polygons with basenet. Numbers in white denote detection
confidences. Imagery 2018 DigitalGlobe.

detected structures actual structures

Figure 5. Detected structure locations across the extent of HTC settlement, compared to actual structure locations. (Online
version in colour.)
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annotation

augmented
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(mask RNN)

new camp

fully automated
detection

Figure 6. Schematic of the assisted mapping process with basenets and adapted nets. At each iteration, a human expert
corrects some proportion of the latest output, which is then used for re-training the adapted net to improve accuracy.

5. Discussion
In this paper, we reviewed remote-sensing technologies and machine learning methods for
guiding humanitarian responses to conflict, human rights violations and man-made or natural
disasters. We also reviewed previous work in automating the development of detailed maps
of refugee settlements for estimating their populations. We provided details of a case study in
which we applied deep learning methods to detect structures on multiple refugee settlements in
a number of locations in Africa and the Middle East.

In our analyses, we demonstrated that it is possible to detect a large proportion of structures
within the settlements studied. However, there is still considerable variation in the characteristics
of imagery collected from different satellite sensors, geographical regions and settlements types,
and this was reflected in our results of our study. As such, this necessitated a semi-automated,
interactive learning approach in order to reach usable levels of accuracy when translating
generally trained models to specific locations. In a leave-one-out training and testing strategy
for a base network, the accuracy varies considerably, and is generally best for settlements which
have similar characteristics to those in the training data and for those where the structures are not
densely packed (in which case the segmentation of distinct structures is a difficulty). The adapted
results are significantly closer to having practicable accuracy, as we might expect. Also as we
would expect, the improvement from adaptation data varies according to how unusual the test
settlement is compared to the training data with which the basenet was trained with.

As the detection of structures is typically conducted through the manual analyses and visual
interpretation of satellite imagery, there is considerable potential for automatic analyses to
augment human analyses tasks, therefore reducing the amount of work needed to provide an
accurate assessment of the images in practice [44,45]. However, there are still multiple challenges
to be addressed when incorporating such methods into practical work flows. Figure 6 shows a
schematic of how we envisage an assisted mapping process using basenets and adaptive nets. At
each iteration stage, a human analyst would provide corrections to a certain proportion of the
most recent output. This corrected information is then used as extra training data to further adapt
the network. After some number of iterations, when the analyst is satisfied that the accuracy is at
an acceptable level, the latest output is used as the final structure mapping.
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A number of methodological improvements may fine-tune the performance of detection
models in future work. These may include more complex or varied network structures, data
augmentation strategies or the inclusion of post-processing techniques incorporating contextual
knowledge relevant to the location being examined [46]. It is also important to understand the
rates of deterioration of results when transferring models to unknown scenarios and geographies.

Technical difficulties with regards to computational capacity may be influenced by the fact
that analyst interaction cycles will need to be integrated with neural network training and
classification in as close to real time as possible. As an analyst manually detects structures in
a settlement, a machine learning model, computing in parallel, will use this information to
automatically detect the remaining structures in the settlement. It is possible that future work will
include the development of an evolving evaluation framework, incorporating manually tagged
structures that will inform the stop criteria for the adaptation, i.e. the proportion of adaptation
data for a new location that would be required as input from an analyst to the machine learning
model, so that it would automatically detect the remaining structures.

One of the key barriers to the adoption of computer-assisted methods to practical work
flows is related to trust. In order to facilitate a transition from current fully manual operational
pipelines to more efficient methods, the user needs to be aware of the performance metrics
of the technology in certain scenarios and become accustomed to it. For automated or semi-
automated methods to be adopted, it is necessary for the technology to be seamlessly integrated
into the manual processing work flow. Even though there are some design criteria that might
not optimize the algorithmic performance, it may still provide opportunity for greater synergy
between humans and machines. For instance, producing false positives carries a psychological
weight, since deleting false positives may seem like an arduous task which hampers progress.

Human experts apply contextual knowledge, such as reasoning about structures from their
shadows, for example, that a structure with internal shadows may not have a roof. Although
there is some research on how to include context in automatic image analysis [46], it is difficult to
encode this type of knowledge or reasoning into current object detection methods. Sometimes
what can be complicated for the machine is trivial for humans and what can be tedious for
humans might be easy for machines. In this context, the key for further systems might be to
evaluate the collective performance of the humans assisted by algorithms as a whole—and do
not evaluate independently humans and algorithms. Further research should therefore consider
the entire workflow, as the assessment of satellite imagery involves some degree of interpretation
and use of contextual information which can pose difficulties for automated processing.

Privacy, sensitivity and ethical dilemmas are major considerations for this work. With the
emergence of high-resolution, high-frequency imagery that is easily accessible, it is imperative
that we seriously consider the privacy implications and the potential unintended consequences
of sharing or using satellite imagery. In humanitarian contexts, vulnerable populations are
particularly exposed, and any experimental uses and new methodologies should occur under
agreed normative frameworks which follow ethical and responsible use principles.

6. Conclusion
In this paper, we have discussed a number of applications of machine learning to remote sensing
in humanitarian emergencies. For the majority of these applications, there are some prototype-
stage results, but as yet there are few systems with the accuracy and robustness to be deployed
in a crisis situation. However, given the pace of advances in computer vision, where in other
domains neural networks are matching or even surpassing human performance, it is likely
that more practical systems will emerge. In our own work looking at remote sensing structure
identification, of which the experiments reported in this paper are the most recent, we have
obtained significantly better results in the last 1–2 years with the availability of better models
and tools. This, combined with the increasing availability of remote-sensing image data and even
video from new satellites and drones, is likely to increase the possibilities for automation.
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At the same time, humanitarian scenarios are particularly challenging in that a very high
degree of accuracy is needed, and in some cases approximative results may be worse than useless.
Time also matters. In this regard, machine learning in these applications is somewhat similar to
medical imaging. Important decisions must be made on the basis of what may sometimes be
small and indistinct features in an image. However, whereas medical imaging normally involves
carefully calibrated equipment, high-resolution remote-sensing imagery is affected by many
factors including the sensor, climate, time of day and other factors.

We conclude that while there are many promising lines of research into humanitarian
applications of machine learning on remote-sensing data, fully automated processing is not
yet practical in the majority of cases. Structure counting in refugee settlements is an example,
though one which also illustrates the possibilities of combined human–machine analysis, i.e.
where human experts help to calibrate a model and also to post-process the model’s output.
Augmentation of human capabilities is, therefore, a good strategy, to aim for human experts
aided by machine learning systems to be able to carry out analysis with high throughput and
yet maintaining the necessary levels of quality control.
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